Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model.

نویسندگان

  • D Breda
  • D Visetti
چکیده

We study an S-I type epidemic model in an age-structured population, with mortality due to the disease. A threshold quantity is found that controls the stability of the disease-free equilibrium and guarantees the existence of an endemic equilibrium. We obtain conditions on the age-dependence of the susceptibility to infection that imply the uniqueness of the endemic equilibrium. An example with two endemic equilibria is shown. Finally, we analyse numerically how the stability of the endemic equilibrium is affected by the extra-mortality and by the possible periodicities induced by the demographic age-structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE STABILITY AND THRESHOLD ANALYSIS OF AN EPIDEMIC MODEL

We consider a mathematical model of epidemic spread  in which the  population  is partitioned  into five compartments of susceptible S(t), Infected I(t), Removed R(t), Prevented U(t) and the Controlled W(t). We assume each of the compartments comprises of cohorts of individuals which are  identical with respect to the disease status. We derive five systems of equations to represent each of the ...

متن کامل

Existence and Uniqueness of Endemic States for the Age-Structured Seir Epidemic Model

The existence and uniqueness of positive steady states for the age structured S-I-R epidemic model with intercohort transmission is considered. Threshold results for the existence of endemic states are established for most cases. Uniqueness is shown in each case. Threshold used are explicitly computable in terms of demographic and epidemiological parameters of the model.

متن کامل

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

Endemic threshold results in an age-duration-structured population model for HIV infection.

In this paper we consider an age-duration-structured population model for HIV infection in a homosexual community. First we investigate the invasion problem to establish the basic reproduction ratio R(0) for the HIV/AIDS epidemic by which we can state the threshold criteria: The disease can invade into the completely susceptible population if R(0)>1, whereas it cannot if R(0)<1. Subsequently, w...

متن کامل

Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis ‎Incidence Rate and a Constant Infectious Period

In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical biosciences

دوره 235 1  شماره 

صفحات  -

تاریخ انتشار 2012